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Abstract
The moment-based box counting method of multifractal analysis is widely used for estimat-
ing generalized dimensions, Dq, from two-dimensional grayscale images. An evaluation of the
accuracy of this method is needed to establish confidence in the resulting estimates of Dq. We
estimated Dq from q = −10 to +10 for 23 random geometrical multifractal fields with different
grid sizes, and known analytical Dq versus q functions. The fields were transformed to give
normalized grayscale values between zero and one. Comparison of the estimated and analytical
functions indicated the moment-based box counting method overestimates Dq by as much as
6.9% when q � 0. The root mean square error, RMSE, for the entire range of q values examined
ranged from 7.81 × 10−6 to 1.35 × 10−1, with a geometric mean of 6.50 × 10−3. The RMSE
decreased with decreasing grid size and increasing heterogeneity. These trends appear to be
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largely due to the presence of zeros in the normalized grayscale fields. Variations in the slope of
the log-transformed partition function, ln[χ(q, δ)], with box size resulted in the overestimation
of Dq when q � 0. An alternative procedure for estimating Dq was developed based on the
numerical first derivatives of ln[χ(q, δ)]. Using this approach the maximum deviation in Dq

values was only 1.2%, while the RMSE varied from 3.11×10−6 to 2.72×10−2, with a geometric
mean of 2.57 × 10−4. When analyzing normalized grayscale fields, moment-based estimates of
Dq should be interpreted with care. An order of magnitude increase in the accuracy of Dq can
be achieved for such fields if the numerical first derivatives of ln[χ(q, δ)] are used in the analysis
instead of standard linear regression.

Keywords : Box-Counting; Generalized Dimensions; Method-of-Moments; Multifractal; Numer-
ical Derivatives; Truncated Binomial Distribution.

1. INTRODUCTION

Multifractal analysis of two-dimensional grayscale
fields or images has become a popular method
of spatial analysis in many different disciplines.
This technique has been applied to a wide vari-
ety of two-dimensional data sets. A partial list
of applications includes remote sensing imagery,1,2

magnetic resonance and X-ray medical images,3,4

soil spatial variability,5,6 crop yield patterns,7,8

fracture surfaces,9 and even abstract expressionist
artworks.10 In such applications it is often desir-
able to compare images in terms of their estimated
multifractal parameters. Thus, it is important to
know the accuracy of the particular multifractal
technique employed.

Geometrical multifractals can be characterized in
terms of their f(α) spectra11 or their generalized
dimensions, Dq.12 These parameters are theoreti-
cally related through the Legendre transformation
of the mass exponents of order q, τ(q),13 and so it
is no surprise that both have been employed, either
singly or jointly, to parameterize natural systems. A
number of studies have compared the relative per-
formance of different methods of estimating either
f(α) or Dq from empirical data.14−16 However, it is
not possible to evaluate the accuracy of any partic-
ular method using this approach.

By estimating multifractal parameters for mathe-
matical multifractals with known f(α) and Dq func-
tions it is possible to assess the accuracy of different
calculation methods. Chhabra and Sreenivasa,17

Chen et al.,18 and Turiel et al.19 compared esti-
mated and analytical f(α) spectra for synthetic
one-dimensional multifractal signals. Similar analy-
ses performed on the generalized dimensions showed

that estimates of Dq can deviate significantly from
the exact result, particularly for q < 0.20,21

In contrast to studies on one-dimensional sig-
nals, very few assessments of accuracy are available
for multifractal methods applied to two-dimensional
fields. Meisel et al.22 utilized two-dimensional
binary multifractals (Koch split snowflake halls and
asymmetric Koch triadic snowflakes) to investi-
gate the effects of different box counting algorithms
on the estimation of the Dq versus q function. For
q < 0 the algorithms yielded unreliable results
with estimates of Dq strongly dependent on the
minimum box size considered. This result can be
attributed to the use of binary rather than grayscale
fields. In order to define a multifractal probability
measure for binary fields, the minimum box size
must be much greater than the pixel size. As a
result, the range of scales available for the accu-
rate determination of multifractal parameters from
binary images is often inadequate.23

We are aware of only two previous studies
that have investigated the accuracy of multifrac-
tal parameter estimation techniques using grayscale
fields simulated with two-dimensional geometrical
multifractals.4,24 In both cases accuracy was eval-
uated only qualitatively by visual comparison of
the estimated and analytical f(α) spectra. Further-
more, both studies were conducted without vary-
ing the grid size of the multifractal fields, so any
effects of image resolution on accuracy could not be
determined.

The purpose of this paper is to provide a
quantitative assessment of the moment-based box
counting method for estimating the generalized
dimensions, Dq, from two-dimensional grayscale
fields. Originally introduced by Halsey et al.25
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this method is widely used to compute multi-
fractal parameters.11 Method of moment (MOM)
calculations were performed on random geometri-
cal multifractal fields with known analytical Dq

functions.26,27 The influence of varying levels of
grayscale heterogeneity and grid size (resolution)
on the estimation of the generalized dimensions was
investigated.

2. METHODS

2.1. Generation of Multifractal
Grayscale Fields

Two-dimensional random geometrical multifractal
grayscale fields were constructed based on a unit
square subdivided into N(�) = (bi)2 square grid
cells of length � = 1/bi, where b is an integer scale
factor > 1 and i is the iteration level. Generator
mass fractions, µj1, are computed for the j1 = 1 to
b2 grid cells of the i = 1 field according to26:

µj1 =
b2∑

j1=1

BT (j1, b
2, p)

1
j1

, (1)

where BT (j1, b
2, p)=

(
b2

j1

)
pj1(1− p)b

2−j1/
∑b2

j1

(
b2

j1

)×
pj1(1 − p)b

2−j1 is the truncated binomial probabi-
lity28 for getting j1 “successes” or parts in a b2

field when the selected probability is p, and
(

b2

j1

)
is the binomial coefficient. The spatial locations of
the mass fractions are then randomized within the
grid.27 Next, this randomized generator is applied
onto itself. At i = 2 there are j2 = 1 to (b2)2 grid
cells. The values of the mass fractions in the i = 2
cells are calculated from the generator mass frac-
tions by:

µj2 = µj1 × µj1. (2)

The spatial locations of the mass fractions at i = 2
are then randomized within the i = 1 subunits. Rep-
etition of this procedure to the ith iteration level
produces a multiplicative cascade of mass fractions
or geometrical multifractal.29,30

By way of example, consider the following b = 3,
p = 8/9, i = 1 generator:

µj1 =


µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 µ9


 =


0.127 0.127 0.127

0.127 0.127 0.124
0.115 0.087 0.038




⇒

0.124 0.127 0.127

0.087 0.127 0.127
0.127 0.038 0.115


 ,

where ⇒ indicates the randomization process.
Based on Eq. (2), at i = 2 the j1 = 1 cell (with
µ1 = 0.124) is sub-divided into nine smaller cells
of length � = 1/9 containing the following mass
fractions:
0.124 × 0124 0.124 × 0.127 0.124 × 0.127
0.124 × 0.087 0.124 × 0.127 0.124 × 0.127
0.124 × 0.127 0.124 × 0.038 0.124 × 0.115




⇒

0.124 × 0.038 0.124 × 0.127 0.124 × 0.127
0.124 × 0.127 0.124 × 0.124 0.124 × 0.115
0.124 × 0.127 0.124 × 0.087 0.124 × 0.127




and so on. Once all of the j1 cells have been sub-
divided, the grid at the i = 2 level consists of
9 × 9 cells containing 81 mass fractions. Extension
of this multiplicative process to higher iteration lev-
els results in randomized geometrical multifractal
fields with variable grid sizes.

From Eqs. (1) and (2), the maximum, µmax, and
minimum, µmin, mass fractions at the ith itera-
tion level are (µ1)i and (µb2)i, respectively. The
logarithmic range, λ = ln(µmax/µmin), provides a
measure of the variation in the mass fractions. For
a perfectly homogeneous field, µmax = µmin and
λ = 0. Heterogeneity (as indicated by λ � 1)
increases as both b and i increase, and as p decreases
(Table 1).

In digital image processing, pixel values are often
normalized to give grayscale fields ranging between
zero (white) and one (black).31 To simulate such
fields, the multifractal mass fractions were trans-
formed into grayscale values using the expression:
gji = µji

−µmin

µmax−µmin
. Examples of such fields are shown

in Fig. 1 for a b = 3, p = 8/9 random multifractal
generator iterated to different i levels. The effects of
varying the p value while b and i are held constant
have been illustrated previously.27

2.2. Analytical Generalized
Dimensions

Here, following Perfect et al.,26 we derive an ana-
lytical expression for the generalized dimensions of
the random geometrical multifractal fields discussed
above. The generalized moments of the ith level
field, Mi(q), are given by29,32:

Mi(q) =
b2i∑

ji=1

(µji)
q =

(
1
bi

)(q−1)Dq

, (3)
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(a) (b)

(c) (d)

Fig. 1 Example grayscale images of random geometrical multifractal fields with b = 3, p = 8/9, and grid sizes of: (a) 27×27
(i = 3); (b) 81 × 81 (i = 4); (c) 243 × 243 (i = 5); and (d) 729 × 729 (i = 6).

where q is any integer between ±∞, and Dq, is the
Rényi or qth order generalized dimension. Setting
i = 1 in Eq. (3) and rearranging gives:

Dq =
1

q − 1
log





 b2∑

j1

(µj1)
q




−1
/

log(b); q �= 1.

(4)

The following expression, the derivation of which
can be found in Gouyet,29 is used to compute Dq

when q = 1:

D1 = −
b2∑
j1

µj1 × log(µj1)/ log(b) (5)

where D1 is the entropy or information dimen-
sion. By substituting Eq. (1) into Eqs. (4) and (5),

generalized dimensions can be calculated based on
the b and p values used to generate the random
geometrical multifractal fields. The resulting Dq

versus q curves are independent of the iteration
level.

Generalized dimensions calculated using Eqs. (3),
(4) and (5) for b = 2 and b = 3 random geomet-
rical multifractal fields with different p values are
shown in Fig. 2. For all the fields considered here
Dq = 2 when q = 0 because the initiator was a unit
square. It can be seen that the Dq versus q func-
tions are more sensitive to p when q is negative than
when it is positive. The Dq maxima (as q → −∞)
decrease with increasing p value, while the min-
ima (as q → +∞) increase. The range (maximum
minus minimum) in possible Dq values increases
with increasing b value.
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Fig. 2 Analytical generalized dimensions as a function of q for different values of p: (a) b = 2; and (b) b = 3.

2.3. Empirical Generalized
Dimensions

Empirical estimates of the generalized dimen-
sions for the grayscale fields listed in Table 1
were obtained using the method of moments
(MOM). This box-counting-based approach has
been described many times previously5,11,13,15,16,25

and the reader is referred to these publications
for details. Briefly, the normalized grayscale val-
ues were converted into probability density values

using the transformation ρji(�) = gji/
∑b2i

ji=1 gji .
Grids comprised of square cells (boxes) of vary-
ing length, � < δ < 1, were superimposed on each
field. The probability density value of the kth box
in a superimposed grid, ρk(δ), was calculated as∑k+(δ/�)2

ji=k ρji(�), where 1 ≤ k ≤ δ−2. The δ val-
ues varied with the b and i values for each field, i.e.
δ = 1/bi−m, with m = 1, 2, 3 . . . i.

A weighted summation was performed over all
boxes in a particular grid yielding the partition



August 4, 2009 8:37 00430

356 E. Perfect et al.

Table 1 Parameters Used to Generate the Ran-
dom Geometrical Multifractal Grayscale Fields and
Associated Grid Statistics.

Field # b p i N � λ

1 2 3/4 3 64 1/8 4.6
2 2 3/4 4 256 1/16 6.2
3 2 3/4 5 1024 1/32 7.8
4 2 3/4 6 4096 1/64 9.2
5 2 3/4 7 16, 384 1/128 10.8
6 2 2/4 3 64 1/8 10.6
7 2 2/4 4 256 1/16 14.0
8 2 2/4 5 1024 1/32 17.7
9 2 2/4 6 4096 1/64 21.2
10 2 2/4 7 16, 384 1/128 24.9
11 2 1/4 3 64 1/8 18.9
12 2 1/4 4 256 1/16 25.3
13 2 1/4 5 1024 1/32 31.5
14 2 1/4 6 4096 1/64 38.0
15 2 1/4 7 16, 384 1/128 44.2
16 3 8/9 3 729 1/27 3.7
17 3 8/9 4 6, 561 1/81 4.8
18 3 8/9 5 59, 049 1/243 6.0
19 3 8/9 6 531, 441 1/729 7.1
20 3 8/9 7 4, 782, 969 1/2187 8.3
21 3 6/9 7 4, 782, 969 1/2187 28.8
22 3 4/9 7 4, 782, 969 1/2187 58.0
23 3 2/9 7 4, 782, 969 1/2187 105.5

Note: b = scale factor, p = probability in truncated binomial
distribution, i = iteration level, N = number of cells, � =
cell length, λ = logarithmic range.

function of order q, i.e.

χ(q, δ) =
δ−2∑
k=1

(ρk(δ))q . (6)

For a multifractal measure, the partition function
scales with the box length according to:

χ(q, δ) ∝ δ−τ(q), (7)

where τ(q) is the mass exponent or index for q.
Estimates of τ(q) were obtained for −10 ≤ q ≤
+10 from the slopes of linear regression analyses
performed on ln[χ(q, δ)] versus ln[δ]. For q �= 1,
the generalized dimensions were calculated from
the τ(q) estimates using the expression: Dq =
τ(q)
q−1 . For q = 1, D1 was estimated from the
slope of a linear regression analysis performed on∑δ−2

k=1 ρk(δ) ln[ρk(δ)] versus ln[δ].
Use of non-linear regression analysis to estimate

τ(q) in Eq. (7) was explored but not adopted
because in many cases the resultant Hessian matrix
was singular. Instead, numerical differentiation
of ln[χ(q, δ)] versus ln[δ] was employed as an

alternative to conventional linear regression anal-
ysis. Estimates of τ(q) for each ln[δ], and thus
Dq(ln[δ]), were obtained based on the following
three point formula:33

y′(x) =
y(x + h) − y(x − h)

2h
, (8a)

where y = ln[χ(q, δ)], x = ln[δ], and h is a small
positive finite difference. The two end points were
calculated using a different three point scheme:33

y′(x) =
−3y(x) + 4y(x + h) − y(x + 2h)

2h
, (8b)

with h positive at the start and negative at the end.
Second derivatives were computed by replacing y
and y′ in Eq. (8) with y′ with y′′, respectively.

3. RESULTS AND DISCUSSION

The number of box sizes (n) used to evaluate τ(q) in
the linear regression analyses of ln[χ(q, δ)] on ln[δ]
varied from 3 to 7 (Table 2). This variation is a
result of the different iteration levels employed in
constructing the multifractal fields (Table 1). All
of the coefficients of determination (R2) from the
regression analyses were > 0.999 signifying excellent
goodness of fit regardless of the different n and q
values.

Deviations of the resulting empirical Dq versus q
curves from the corresponding analytical functions
are shown in Fig. 3. For high p value fields there
is a clear trend towards systematic overestimation
(negative deviations) of the analytical function as
q becomes increasingly negative. Campagna and
Turchetti20 report a similar overestimation of Dq for
q < 0 in the case of a one-dimensional multifractal
“Cantor” set. In our study, the maximum absolute
deviation, |∆Dq|max, occurred when q ≤ −8 in 19
out of the 23 fields investigated (i.e. 83%) (Table 2).
Overall, the |∆Dq|max ranged from 0.002 to 6.901%,
with a geometric mean value of 0.322%.

In addition to the maximum absolute deviation,
a root mean squared error (RMSE) was calculated

as: RMSE =
√∑q=+ν

q=−ν((Dq)e − (Dq)a)2/(2ν + 1),
where ν = 1, 2, 3, . . . , 10, and the subscripts “e”
and “a” denote the empirical and analytical values
of Dq, respectively. The RMSE statistic provides a
quantitative measure of the degree correspondence
between the empirical and analytical generalized
dimensions integrated over the range of q values
considered, i.e. ∆q = 2ν. Because of the deviations
observed at negative q values (Fig. 3), the RMSE
generally increased with increasing ∆q. This trend



August 4, 2009 8:37 00430

Accuracy of Empirical Multifractal Analyses 357

b = 2, i = 7

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

q

D
e
vi

at
io

n 
(%

)

p=3/4

p=2/4

p=1/4

(a)

b = 3, i = 7

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

q

D
e
vi

a
tio

n
 (

%
)

p=8/9

p=6/9

p=4/9

p=2/9

(b)

Fig. 3 Percent deviation between analytical and estimated generalized dimensions as a function of p and q for: (a) b = 2,
i = 7; and (b) b = 3, i = 7 random geometrical multifractal fields.

was most pronounced for high p-value fields and
∆q < 10 (Fig. 4). For ∆q > 10 the RMSE was
relatively stable. Therefore, only the RMSE values
for ∆q = 20 were investigated further. These val-
ues, simply referred to as RMSE from this point on,
varied between 7.81× 10−6 and 1.35× 10−1, with a
geometric mean of 6.50 × 10−3 (Table 2).

The RMSE decreased with decreasing values of
the � and p parameters used to construct the
multifractal fields (Tables 1 and 2). Grayscale het-
erogeneity, as quantified by λ, increased as these two

parameters decreased. Figure 5 shows the result-
ing relationship between RMSE and λ. Greater
field heterogeneity improved the degree of corre-
spondence between the moment-based box count-
ing estimates and the analytical values of Dq as
indicated by decreased RMSE values. In terms of
natural grayscale images, this result implies that
the moment based box counting method should
give the most accurate results for high resolu-
tion images comprised of a wide range of pixel
values.
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Fig. 4 Dependence of RMSE on ∆q for b = 2, p = 3/4, i = 7; and b = 3, p = 8/9, i = 7 random geometrical multifractal
fields. Filled and unfilled circles denote estimates based on regression analysis and numerical derivatives, respectively.
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Fig. 5 Influence of heterogeneity on root mean square error (RMSE) in estimated Dq values for b = 2 random geometrical
multifractal fields with different p values. Filled and unfilled circles denote estimates based on regression analysis and numerical
derivatives, respectively.

To investigate the reasons for the poor estima-
tion of Dq as q becomes more negative (Fig. 3) and
the resulting dependency of RMSE on λ (Fig. 5),
we numerically analyzed the log-transformed parti-
tion functions. A typical log-transformed partition
function is shown in Fig. 6(a). Visually all of the
ln[χ(q, δ)] versus ln[δ] relationships appear to be
linear and this explains the very high R2 values
obtained in the regression analyses. Inspection of
the numerical first derivatives (Fig. 6(b)), however,

indicates that the slope is not always constant. For
negative q values the slope becomes more negative
as ln[δ] → −∞. Furthermore, this trend is amplified
as the q values decrease, which can be clearly seen
in the plot of the second numerical derivatives as a
function of ln[δ] (Fig. 6(c)).

Given the behavior of the log-transformed par-
tition function in Fig. 6, it is logical to ask the
question: which of the ln(δ) increments yields
numerical first derivatives that best estimates the
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Fig. 6 (a) Example log-transformed partition function, ln[χ(q, δ)] versus ln[δ], for a random geometrical multifractal field
with b = 3, p = 8/9, and i = 7; (b) first numerical derivatives of ln[χ(q, δ)] versus ln[δ]; and (c) second numerical derivatives
of ln[χ(q, δ)] versus ln[δ].
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analytical Dq values? To answer this question we
computed generalized dimensions from the numer-
ical first derivatives for all of the ln[δ] increments
in each log-transformed partition function (n = 3
to 7 depending upon the field investigated). These
numerical estimates of Dq consistently decreased
with increasing ln[δ]. As expected from Fig. 6, the
greatest changes in Dq occurred when q = −10.
Four examples of this pronounced ln(δ) dependency
are shown in Fig. 7, which also includes the corre-
sponding analytical Dq values for comparison. The
numerically-derived Dq estimates asymptotically
approach the known analytical values as ln[δ] → 1
(i.e. as the box size approaches the field size). Con-
sidering all of the multifractal fields, the best esti-
mates of the analytical Dq values were obtained
using the numerical first derivatives computed for
the largest box size increment (i.e. Eq. (8b) with h
negative).

The performance of Eq. (8b) as an estimator
of τ(q), and thus Dq, is summarized in Table 2.
Maximum absolute differences for the numerically
derived estimates of Dq ranged from < 0.001
to 1.229%, with a geometric mean |∆Dq|max of
0.017%. In contrast to the regression-based esti-
mates there was no clear dependency of the max-
imum error on q, and in only 2 cases (i.e. 8.7%)
did |∆Dq|max occur when q ≤ −8 (Table 2).
The improvement in accuracy achieved with the

numerical approach, including reduced sensitivity
to ∆q, is readily apparent in Fig. 4. For ∆q = 20
the numerical RMSE varied between 3.11×10−6 and
2.72 × 10−2, with a geometric mean of 2.57 × 10−4

(Table 2). These values, along with |∆Dq|max, indi-
cate at least an order of magnitude increase in accu-
racy in the estimation of Dq using the numerical
first derivatives as compared to the conventional
regression-based approach.

Despite the overall increase in accuracy achieved
by the numerical derivative method, the result-
ing RMSE values still varied as a function of
field heterogeneity (Fig. 5, Table 2). The least
accurate estimates of Dq versus q were obtained
for the most homogeneous fields (i.e. those with
low b and high p and i values). As with the
regression-based approach, the magnitude of the
RMSE’s decreased with increasing λ. However, for
low p-value fields, the numerical RMSE’s appear to
approach a minimum beyond which there was no
further improvement in the estimation of the gen-
eralized dimensions (Fig. 5).

We have observed that subtle variations in the
slope of the log-transformed partition function,
ln[χ(q, δ)], result in the systematic over estimation
of Dq when q � 0. These errors appear to be
largely due to the transformation used to normal-
ize the random geometrical multifractal fields, i.e.
gji = µji

−µmin

µmax−µmin
. The impact of this transformation

2.5
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Fig. 7 Generalized dimensions for q = −10 computed from numerical derivatives of log-transformed partition functions for
random geometrical multifractal fields with b = 2, p = 3/4, i = 3 and 7, and b = 3, p = 8/9, i = 3 and 7. Corresponding
horizontal lines represent the analytical Dq values.
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Table 2 Summary of Moment-Based Box Counting Analyses Performed on Random
Geometrical Multifractal Grayscale Fields with −10 ≤ q ≤ +10.

Field # n Regression Analysis Numerical Derivatives

|∆Dq|max(%) q
†
max RMSE |∆Dq|max(%) qmax RMSE

1 3 6.901 −10 1.35 × 10−1 1.229 10 2.41 × 10−2

2 4 4.696 −10 9.10 × 10−2 0.382 10 4.65 × 10−3

3 5 3.371 −10 6.47 × 10−2 0.120 10 1.35 × 10−3

4 6 2.524 −10 4.81 × 10−2 0.038 10 4.22 × 10−4

5 7 1.953 −10 3.70 × 10−2 0.012 10 1.28 × 10−4

6 3 0.839 −8 2.72 × 10−2 0.636 −7 2.72 × 10−2

7 4 0.516 −8 1.67 × 10−2 0.041 −7 1.32 × 10−3

8 5 0.348 −8 1.12 × 10−2 0.003 −10 8.34 × 10−5

9 6 0.250 −8 8.03 × 10−3 0.002 8 1.34 × 10−5

10 7 0.189 −8 6.03 × 10−3 0.002 10 1.70 × 10−5

11 3 0.044 −10 2.29 × 10−3 0.043 −7 2.26 × 10−3

12 4 0.026 −10 1.37 × 10−3 0.002 6 1.44 × 10−5

13 5 0.018 −10 9.15 × 10−4 < 0.001 −1 6.93 × 10−6

14 6 0.013 −5 6.53 × 10−4 0.001 5 9.20 × 10−6

15 7 0.009 −10 4.89 × 10−4 0.003 8 1.39 × 10−5

16 3 5.872 −10 8.93 × 10−2 0.362 −1 7.06 × 10−3

17 4 4.044 −10 6.05 × 10−2 0.170 −2 1.54 × 10−3

18 5 2.927 −10 4.32 × 10−2 0.077 −2 8.67 × 10−4

19 6 2.203 −10 3.21 × 10−2 0.049 −3 7.69 × 10−4

20 7 1.714 −10 2.47 × 10−2 0.060 −10 9.54 × 10−4

21 7 0.025 2 1.04 × 10−4 0.003 10 7.48 × 10−5

22 7 0.036 1 1.04 × 10−4 0.004 10 1.06 × 10−4

23 7 0.002 1 7.81 × 10−6 < 0.001 10 3.11 × 10−6

Note: n = number of box sizes, |∆Dq |max = maximum absolute deviation between analytical and
empirical Dq values, qmax = value of q corresponding to |∆Dq |max, RMSE = root mean square
error.

on the MOM-based box counting analyses was most
pronounced for homogenous fields and at low res-
olutions. This is because the greatest differences
between ρji(�) = µmin (i.e. the minimum mass
fraction in the untransformed state) and ρji(�) = 0
(i.e. minimum mass fraction in the transformed
state) occur under such conditions. Normalization
also explains why the Dq values were numerically
best estimated using the largest box sizes. The pres-
ence of a zero value instead of µmin has a large
impact on the computation of χ(q, δ) when δ → �,
but only a minimal impact when δ → 1. It should
be noted that this behavior is completely opposite
to what one might have expected based on previous
experience with the box counting algorithm applied
to geometrical monofractals.

We used the IEEE standard double preci-
sion (∼ 16 digits) for floating point calculations.
Chen et al.18 have pointed to computational over-
flow (associated with extremely large values of
χ(q, δ) when δ → � and q � 0) as a possible

source of error in MOM box counting analyses.
In our study, the largest values of χ(q, δ) occurred
when analyzing the most heterogeneous fields (i.e.
λ � 1). Since these fields always resulted in the
smallest estimation errors (see Tables 1 and 2),
computational overflow can be discounted as a con-
tributing factor.

Another potentially important issue relates to
the choice of the box counting scale factor used
in the MOM analyses. Errors in the estimation of
Dq can be expected to arise from any grid mis-
match caused by the use of different scale factors
for the random geometrical multifractal field and
the superimposed box counting grid. In this study,
we always matched these two scale factors. Fur-
ther research is needed to investigate the magnitude
of the errors introduced by such grid mismatches.
For digital images and experimentally-determined
data there may be no inherent grid scale factor
beyond the value suggested by the overall dimen-
sions of the field. In this case, the box counting scale
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factor is almost universally taken as two. Does this
somewhat arbitrary choice influence the estimation
of Dq?

An additional consideration is how to extend this
research to natural grayscale fields which, regardless
of the grid size, are often limited to 256 pixel values.
In contrast, geometrical multifractal fields always
contain as many mass fractions (or grayscales)
as there are grid cells. How does this difference
influence the estimation of Dq versus q? Natural
systems can be expected to deviate from ideal mul-
tifractal scaling. Given the nonlinearities apparent
in the log-transformed partition functions for known
geometrical multifractal fields, what statistical cri-
teria should be used to separate out multifractal
scaling from monofractal or Euclidean behavior? It
is clear that an R2 value close to unity for ln[χ(q, δ)]
regressed on ln[δ] is not a reliable indicator of lin-
earity and more work should be devoted to this
issue.

Finally, a logical future research direction might
be to explore use of the moment-based box counting
method to inversely estimate the b and p parame-
ters for natural grayscale fields and images. Such
a parsimonious parameterization of multifractality
might find applications in a variety of different
disciplines.

4. CONCLUSIONS

Random geometrical multifractal grayscale fields
provide a theoretical foundation for evaluating the
accuracy of generalized dimensions estimated by
the moment-based box counting method. Compar-
ison of estimated Dq values with their analyti-
cal counterparts indicated the moment-based box
counting method systematically overestimates the
generalized dimensions when q is negative. Maxi-
mum absolute deviations generally increased as q
became more negative. As a result, RMSE values
usually increased as the range in q increased. For
any selected q range, the RMSE values increased
with increasing grid size and decreasing field het-
erogeneity. Based on all 23 multifractal fields inves-
tigated, the geometric mean RMSE was 6.50×10−3

for ∆q = 20.
The source of the deviations in the estimated gen-

eralized dimensions when q � 0 was attributed
to the transformation used to convert the mass
fractions into normalized grayscale fields rang-
ing between zero and one. The presence of cells
containing zero generated nonlinearities in the

log-transformed partition functions as the box size
was gradually reduced to the dimensions of the
underlying grid. As a result, linear regression anal-
yses yielded biased estimates of the slope, τ(q). An
alternative procedure for estimating τ(q) was pro-
posed based on the numerical first derivatives of the
log-transformed partition function as the box size
approaches the field size. This approach resulted in
an order of magnitude increase in accuracy in the
estimation of Dq versus q when compared to the
linear regression analyses.
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